The nitrogen vacancy center: exploring spin dynamics in diamond

> Lily Childress Bates College CUWP, Yale University January 16, 2009

Quantum mechanics: A new way to encode information

Classical information

Encoded in classical bits = classical systems with two possible values

Quantum information

Encoded in quantum bits = quantum systems that can be any superposition of two quantum states

Measurement does not change the state of the classical bit Measurement collapses the quantum superposition onto the state that you measure

Quantum mechanics: Erle can't listen in!

Exponential speedup possible*

Quantum states: A new way to encode information

A new way to communicate A new way to compute Challenge: implementation

(It's hard to maintain coherence!)

Potential laboratory systems:

Our work:

single electronic spins associated with the nitrogen-vacancy center in diamond

The nitrogen-vacancy (NV) center in diamond

Laser excitation

- Why the NV?
 - \checkmark optically active
 - \checkmark electron spin triplet
 - \checkmark optical spin polarization and detection

Jelezko PRL 2004, Manson PRB 2007

The nitrogen-vacancy (NV) center in diamond

Under green excitation

- Initially, $|0\rangle$ fluoresces more strongly than $|\pm 1\rangle$
- Eventually (after about 1 μ s), the NV center polarizes into $|0\rangle$

- Why the NV?
 - \checkmark optically active
 - \checkmark electron spin triplet
 - \checkmark optical spin polarization and detection

Imaging NV Centers

Gruber, Science 1997

Imaging NV Centers

Close to diffractionlimited resolution

100 kcts/sec typical

Gruber, Science 1997

Manipulating NV spins

Microwave excitation:

Gruber, Science 1997, Hanson PRB 2006

Manipulating single NV spins

Hyperfine coupling to nitrogen nuclear spin

Ramsey sequence: Another way to see ¹⁴N hyperfine structure

Ramsey sequence: Another way to see ¹⁴N hyperfine structure

Hyperfine coupling to ¹³C nuclear spins

¹³C NV ¹⁴N

¹⁴N quadrupole moment anchors it to the NV axis

Spin ¹/₂ ¹³C is free to precess

Hyperfine structure visible in spin resonance:

¹³C dynamics visible with spin-echo spectroscopy

LC, Dutt Science 2006

Coherence properties of the NV spin

Spin-echo pulse sequence:

The π pulse flips the spin, so that during the second free precession period it unwinds the phase accumulated during the first free precession period => only see a signal if the environment *changes faster than 2* τ

• The spin-echo gets rid of slow fluctuations in the environment

=> gives the decoherence time rather than the dephasing time

• Allows you to observe dynamics of the environment

Hyperfine coupling to ¹³C nuclear spins

¹⁴N quadrupole moment anchors it to the NV axis

Spin ¹/₂ ¹³C is free to precess

- → ¹³C Spin-echo modulation at short times...
- → ¹³C Spin-echo collapse and revival at long times...

LC, Dutt Science 2006

Hyperfine coupling to ¹³C nuclear spins

FEillboontooböveverproximianal@Gueledespispins by turning on and off the NV dipole field

• nuclear polarization

Free precession of a proximal carbon-13 nuclear spin

•¹³C fidelity limited by uncontrolled ¹⁴N nuclear spin

•Why not *use* ¹⁴N?

• NV-¹³C CNOT gate

Motivates combined NMR and ESR techniques

Dutt Science 2007

Current project: combining MW and RF manipulation of spins in diamond

• Should allow polarization and manipulation of ${}^{14}N$...

• ...and direct manipulation of ¹³C

Ensemble ENDOR: He, PRB 1993

Current project: combining MW and RF manipulation of spins in diamond

...pulsed techniques to come...

In summary...

Quantum systems

A new way to communicate A new way to compute

Requires control over coupled quantum mechanical systems

Single electronic spins in diamond

An opportunity to study a quantum system (the NV spin) and its interactions with its environment (surrounding nuclear spins)

A promising system for applications in quantum information science and metrology

Many thanks to

Yuanyuan Jiang `09 Gabe Ycas George Ruff Jack Pribram & Bates Gurudev Dutt Mikhail Lukin

... and you for your attention!